PREPARATION OF NEW CHIRAL PYRROLIDINEBISPHOSPHINES AS HIGHLY EFFECTIVE LIGANDS FOR CATALYTIC ASYMMETRIC SYNTHESIS OF R-(-)-PANTOLACTONE¹⁾

> Hisashi Takahashi, Masaaki Hattori, Mitsuo Chiba, Toshiaki Morimoto, and Kazuo Achiwa*

Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422, Japan

Abstract: New chiral pyrrolidine bisphosphines, MSCPM, PCPM and BCPM, were prepared. Among them, BCPM was found to be the most effective ligand for catalytic asymmetric synthesis of R-(-)-pantolactone.

Previously, we developed the chiral pyrrolidinebisphosphine named as BPPM which was found to be the most effective chiral ligand for catalytic asymmetric synthesis of α -amino acids, α -methylsuccinic acid, and R-(-)-pantolactone.²)

Furthermore, our studies on the mechanism of asymmetric hydrogenation of itaconic acid with BPPM-Rh⁺ complex using ³¹P-NMR spectroscopy indicated the intermediary key structure of BPPM-Rh⁺-itaconic acid complex as shown in Fig.1, where the conformation of diphenyl groups substituted on the phosphine-2 played a more important role in determining the asymmetric induction than that on the phosphine-1. 3, 4)

Fig.1

From these^{2,3)} and the other facts⁵⁾, we now prepared the (2S,4S)-N-(tert-butoxycarbonyl)-4-(dicyclohexylphosphino)-2-[(diphenylphosphino)methyl]-pyrrolidine (BCPM) where dicyclohexyl groups on the phosphine-1 were expected to accelerate the reactivity and improve the optical yield of asymmetric hydrogenation of trans-coordinated carbonyl group, and also diphenyl groups on the phosphine-2 to keep the high stereoselectivity.

The chiral pyrrolidinebisphosphines, (2S,4S)-N-substituted-4-(dicyclo-hexylphosphino)-2-[(diphenylphosphino)methyl]pyrrolidines (**11,13a,13b**), were synthesized from 4-hydroxy-L-proline ethyl ester hydrochloride (Scheme 1).

N-Protection of 1 with methanesulfonyl chloride was followed by reduction with $LiAlH_4$ in THF to produce a diol (3). After the selective protection of the primary alcohol with tert-butyldimethylsilyl chloride in THF, mesylation of the free alcohol and subsequent phosphination with sodium diphenylphosphide in dioxane-THF proceeded to give monophosphino compound (6). Oxidation of 6with 10% hydrogen peroxide in MeOH and subsequent desilylation with 3% methanolic hydrogen chloride gave the phosphine oxide (7). The phosphinyl compound (7) was then hydrogenated in MeOH with hydrogen (150 atm) at 150 °C for 2 days over 5% Rh-Al₂O₃ to give the dicyclohexylphosphinyl compound (8). Mesylation of the primary alcohol of ${f 8}$ followed by usual phosphination and oxidation gave the bisphosphinyl compound (10). Reduction of the phosphine oxide was achieved by refluxing with HSiCl₃-NEt₃ in CH₃CN under argon and followed by treatment with 30% NaOH. The resulting product was purified by recrystallization to give (2S, 4S) - N - (methanesulfony1) - 4 - (dicyclohexy1)phosphino)-2-[(diphenylphosphino)methyl]pyrrolidine (MSCPM, 11). The other N-substituted pyrrolidine bisphosphines were synthesized as follows. Demesylation of 10 was achieved by heating with 48% HBr and phenol⁶⁾ to give the free amine (12), which was then transformed into (2S, 4S) - N - (pheny)carbamoyl)- and (2S,4S)-N-(tert-butoxycarbonyl)-4-(dicyclohexylphosphino)-2-[(diphenylphosphino)methyl]pyrrolidine (PCPM 13a, BCPM 13b) by the reduction and subsequent reactions with phenylisocyanate and di-tert-butyl dicarbonate, respectively.⁷⁾

Asymmetric hydrogenation of ketopantolactone was carried out with the substrate (5.0 mmol), $[Rh(COD)C1]_2$ (2.5x10⁻² mmol) and bisphosphine ligand (5.5x10⁻² mmol) under hydrogen (50 atm) at 50 °C for 45 hr in THF (5 ml). The hydrogenation with [BCPM (13b)]/[Rh]/[substrate]=1.1/1.0/1000 was also examined (Scheme 2). Table 1 shows the optical yield and the configuration of the product.

L*: bisphosphine

				•	
ligands	[substrate]/[Rh]	conv. (%) ^{b)}	[α] _D	opt. yield	(%) ^{c)} config.
MSCPM (11)	100	100	-33.6°	66.3	R
PCPM (13a)) 100	100	-36.9°	72.8	R
BCPM (13b)	,	100	-46.6°	92.0	R
BCPM (13b)	$)^{d}$ 100	100	-44.7°	88.2	R
BCPM (13b)) 1000	100	-45.9°	90.5	R

Table 1. Asymmetric Hydrogenation of Ketopantolactone.^{a)}

a) All hydrogenations were carried out with [substrate]=1.0 M in THF unless otherwise noted. b) Determined by GLC analysis.

c) $[\alpha]_{D}^{25}$ -50.7° (c2.05, $H_{2}0$)⁸ d) Solvent: benzene.

R-(-)-Pantolactone of very high optical purity was obtained when BCPM (13b) was used as a ligand. The stereoselectivity of over 91%-92% with [substrate]=1.0 M was achieved.

It should be emphasized that the present asymmetric hydrogenation catalyzed by BCPM-Rh proceeds smoothly with the high enatioselectivity (opt. yield >90.5%) at even a high substrate to catalyst ratio (1000 : 1).

Further investigations along this line are actively under way.

Referrences and Notes

- 1) Asymmetric Reactions Catalyzed by Chiral Metal Complexes XXII.
- 2) K. Achiwa, Journal of Synthetic Organic Chemistry, Japan, <u>37</u>, 119 (1979);
 - K. Achiwa, T. Kogure, and I. Ojima, Tetrahedron Lett., 1979, 4431;
 - K. Achiwa, T. Kogure, and I. Ojima, Chem. Lett., 1978, 297; I. Ojima,
 - T. Kogure, and K. Achiwa, J. Org. Chem., <u>43</u>, 3444 (1978).
- K. Achiwa, Y. Ohoga, and Y. Iitaka, Chem. Lett., <u>1979</u>, 865; K. Achiwa,
 Y. Ohoga, and Y. Iitaka, 26th Sympodium on Organometallic Chemistry, Japan, 1979, Abstract No. B202.
- 4) Ojima et al. assigned each of the phosphines erroneously by ³¹P-NMR spectroscopy [Chem. Lett., <u>1978</u>, 1145 and <u>1979</u>, 641; 26th Sympodium on Organometallic Chemistry, Japan, 1979, Abstract No. B204.] and later corrected their misassignment by using our method [J. Org. Chem., <u>45</u>, 4728 (1980)].
- 5) K. Tani, T. Ise, Y. Tatsuno, and T. Saito, J. Chem. Soc., Chem. Commun., 1984, 1641 and referrences cited therein.
- 6) H. R. Snyder and R. E. Heckert, J. Am. Chem. Soc., <u>74</u>, 2006 (1952).
- Synthesis of the other N-substituted pyrrolidinebisphosphines will be discussed in a separated paper.
- E. T. Stiller, S. A. Harris, J. Finkelstein, J. C. Keresztesy, and K. Folkers, J. Am. Chem. Soc., <u>62</u>, 1785 (1940).
 (Received in Japan 17 May 1986)